Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract. Plant and microbial nitrogen (N) dynamics and N availability regulate the photosynthetic capacity and capture, allocation, and turnover of carbon (C) in terrestrial ecosystems. Studies have shown that a wide divergence in representations of N dynamics in land surface models leads to large uncertainties in the biogeochemical cycle of terrestrial ecosystems and then in climate simulations as well as the projections of future trajectories. In this study, a plant C–N interface coupling framework is developed and implemented in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0). The main concept and structure of this plant C–N framework and its coupling strategy are presented in this study. This framework takes more plant N-related processes into account. The dynamic C/N ratio (CNR) for each plant functional type (PFT) is introduced to consider plant resistance and adaptation to N availability to better evaluate the plant response to N limitation. Furthermore, when available N is less than plant N demand, plant growth is restricted by a lower maximum carboxylation capacity of RuBisCO (Vc,max), reducing gross primary productivity (GPP). In addition, a module for plant respiration rates is introduced by adjusting the respiration with different rates for different plant components at the same N concentration. Since insufficient N can potentially give rise to lags in plant phenology, the phenological scheme is also adjusted in response to N availability. All these considerations ensure a more comprehensive incorporation of N regulations to plant growth and C cycling. This new approach has been tested systematically to assess the effects of this coupling framework and N limitation on the terrestrial carbon cycle. Long-term measurements from flux tower sites with different PFTs and global satellite-derived products are employed as references to assess these effects. The results show a general improvement with the new plant C–N coupling framework, with more consistent emergent properties, such as GPP and leaf area index (LAI), compared to the observations. The main improvements occur in tropical Africa and boreal regions, accompanied by a decrease in the bias in global GPP and LAI by 16.3 % and 27.1 %, respectively.more » « less
-
Abstract Subseasonal to seasonal (S2S) prediction of droughts and floods is one of the major challenges of weather and climate prediction. Recent studies suggest that the springtime land surface temperature/subsurface temperature (LST/SUBT) over the Tibetan Plateau (TP) can be a new source of S2S predictability. The project “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction (LS4P)” was initiated to study the impact of springtime LST/SUBT anomalies over high mountain areas on summertime precipitation predictions. The present work explores the simulated global scale response of the atmospheric circulation to the springtime TP land surface cooling by 16 current state-of-the-art Earth System Models (ESMs) participating in the LS4P Phase I (LS4P-I) experiment. The LS4P-I results show, for the first time, that springtime TP surface anomalies can modulate a persistent quasi-barotropic Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train from the TP via the northeast Asia and Bering Strait to the western part of the North America, along with the springtime westerly jet from TP across the whole North Pacific basin. The TRC wave train modulated by the TP thermal anomaly play a critical role on the early summer surface air temperature and precipitation anomalies in the regions along the wave train, especially over the northwest North America and the southern Great Plains. The participant models that fail in capturing the TRC wave train greatly under-predict climate anomalies in reference to observations and the successful models. These results suggest that the TP LST/SUBT anomaly via the TRC wave train is the first order source of the S2S variability in the regions mentioned. Furthermore, the TP surface temperature anomaly can influence the Southern Hemispheric circulation by generating cross-equator wave trains. However, the simulated propagation pathways from the TP into the Southern Hemisphere show large inter-model differences. More dynamical understanding of the TRC wave train as well as its cross-equator propagation into the Southern Hemisphere will be explored in the newly launched LS4P phase II experiment.more » « less
-
Abstract Land surface processes are vital to the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation by using the weather research and forecasting (WRF) model at 10-km resolution to the land surface schemes over Central Asia. The WRF model was run for 19 summers from 2000 to 2018 configured with four different land surface schemes including CLM4, Noah-MP, Pleim-Xiu and SSiB, hereafter referred as Exp-CLM4, Exp-Noah-MP, Exp-PX and Exp-SSiB respectively. The initial and boundary conditions for the WRF model simulations were provided by the National Centers for Environmental Prediction Final (NCEP-FNL) Operational Global Analysis data. The ERA-Interim reanalysis (ERAI), the GHCN-CAMS and the CRU gridded data were used to comprehensively evaluate the WRF simulations. Compared with the reanalysis and observational data, the WRF model can reasonably reproduce the spatial patterns of summer mean 2-m temperature, precipitation, and large- scale atmospheric circulation. The simulations, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by Multivariable Integrated Evaluation (MVIE) method. To comprehensively understand the dynamic and physical mechanisms for the WRF model’s sensitivity to land surface schemes, the differences in the surface energy balance between Ave-CLM4-SSiB (the ensemble average of Exp-CLM4 and Exp-SSiB) and Ave-NoanMP-PX (the ensemble average of Exp-Noah-MP and Exp-PX) are analyzed in detail. The results demonstrate that the sensible and latent heat fluxes are respectively lower by 30.42 W·m−2and higher by 14.86 W·m−2in Ave-CLM4-SSiB than that in Ave-NoahMP-PX. As a result, large differences in geopotential height occur over the simulation domain. The simulated wind fields are subsequently influenced by the geostrophic adjustment process, thus the simulations of 2-m temperature, surface skin temperature and precipitation are respectively lower by about 2.08 ℃, 2.23 ℃ and 18.56 mm·month−1in Ave-CLM4-SSiB than that in Ave-NoahMP-PX over Central Asia continent.more » « less
-
null (Ed.)Abstract Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers on the basis of observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site whereas a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site and the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is much weaker, and even becomes SUCI during daytime, with the short grassland site being the reference site because of its larger aerodynamic resistance. The study highlights that the magnitude of SUHIs and SUCIs is mostly controlled by urban–rural differences of biophysical factors, with urban–rural differences of atmospheric conditions playing a minor role.more » « less
-
Abstract The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.more » « less
-
Abstract Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations.more » « less
An official website of the United States government
